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Abstract

A quantitative structure-permeability relationship was developed using Artificial Neural Network (ANN) modeling
to study penetration across a polydimethylsiloxane membrane. A set of 254 compounds and their experimentally
derived maximum steady state flux values used in this study was gathered from the literature. A total of 42 molecular
descriptors were calculated for each compound. A genetic algorithm was used to select important molecular
descriptors and supervised ANN was used to correlate selected descriptors with the experimentally derived maximum
steady-state flux through the polydimethylsiloxane membrane (log J). Calculated molecular descriptors were used as
the ANN’s inputs and log J as the output. Developed model indicates that molecular shape and size, inter-molecular
interactions, hydrogen-bonding capacity of drugs, and conformational stability could be used to predict drug
absorption through skin. A 12-descriptor nonlinear computational neural network model has been developed for the
estimation of log J values for a data set of 254 drugs. Described model does not require experimental parameters and
could potentially provide useful prediction of membrane penetration of new drugs and reduce the need for actual
compound synthesis and flux measurements. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The skin offers a number of opportunities as a
route of administration of drugs, both for topical
application in local treatment of skin diseases and
for transdermal application of drugs for systemic

effects. The general principles governing the use
of drugs applied to the skin are the same as those
for other routes of drug administration.

The main function of skin is to provide a
barrier that protects the body from foreign sub-
stances. Before any drug applied topically can act
either locally or systematically, it must penetrate
the skin’s barrier. Skin consists of two layers, the
epidermis and the dermis. The epidermis has no
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capillary blood flow but is made up of several
layers of enzymatically active cells. The outermost
layer, stratum corneum, behaves like a passive
diffusion barrier [1]. It is responsible for limiting
the passage of exogenous chemicals across the
skin into the systemic circulation. It consists of
layers of keratinized dead cells at the skin’s sur-
face and two alternating amorphous lipophilic
and hydrophilic layers layer in the inner layers [2].
The dermis contains the capillary network that
transports the drug to the systemic circulation.
Thus, drugs with both lipid and water solubility
characteristics have a better chance of diffusing
through the epidermis [3]. Solute molecules may
penetrate the skin through hair follicles or sweat
ducts. However, these ways of penetration are of
only minor importance because they represent just
a small fraction of the total skin surface area.

Quantification of the flux of drug through skin
barriers is the basis of Trans Dermal Drug Deliv-
ery (TD DD) and techniques for making such
measurements are rapidly increasing in number
and sensitivity. TD DD offers several important
advantages over the usual periodic modes of drug
administration. It is convenient, efficient and has
fewer side effects. TD DD can provide a good
substitute for the oral route as it bypasses gas-
trointestinal absorption (pH effects, enzymatic ac-
tivity and drug interactions) and drug
deactivation by digestive and liver enzymes (the
‘first-pass effect’). The dosage may thus be lower
than the amount given orally, and a constant
drug–plasma concentration can be maintained
enabling optimum blood concentration– time
profile, predictable and prolonged blood levels
and reduced frequency of dosage. TD DD can
also provide fast route of medication in emer-
gency and, if necessary, an easy and fast way to
terminate drug effects since the drug–plasma con-
centration will quickly decrease when the formu-
lation is removed from the skin.

However, there are also some disadvantages.
The main disadvantage is that only relatively po-
tent drugs are able to diffuse through the skin.
Some may irritate the skin. Moreover, the envi-
ronment of the skin, different skin types, and
problems with adhesion can cause difficulties in
the design of the transdermal delivery systems [4].

Thus, the development of TD DD systems is
hindered by a number of difficulties arising from
the inherently variable nature of the skin barrier.
As a consequence, a therapeutically viable dose is
dependent upon a number of factors, including
skin conditions (hydration of the skin, tempera-
ture, PH, rubbing or injunction) thickness of the
stratum corneum and location on the body [5].

Human ex vivo models and artificial mem-
branes have been used for in vitro measurements
of drug penetration where concern about the toxi-
city of novel compounds and costs of screening
large number of candidates limit the use of in vivo
techniques. Although such models cannot fully
replicate in vivo conditions, they can provide use-
ful indications of drug release in vivo. These
methods are still expensive and time consuming,
and they require large amounts of sample. Thus, a
theoretical method that could predict drug pene-
tration through skin with high precision would be
of interest.

Knowledge of molecular structure is the key to
understanding of the functioning of molecules.
Intrinsic to chemistry is the concept that there is a
relationship between bulk properties of com-
pounds and their molecular structure that pro-
vides a connection between the macroscopic and
the microscopic properties of matter. A change in
a structure of a molecule usually produces an
associated change in its properties. Finding one or
more molecular descriptors that explain variations
in physico-chemical properties or biological activ-
ity has resulted in the development of linear free
energy relationships (LFER) [6] and quantitative
structure activity/property relationships (QSAR/
QSPR) as natural extensions of the LFER ap-
proach. QSARs are mathematical models that
relate the biological activity of a compound to its
physicochemical structure. One of the conditions
for a successful QSAR model is that parameters,
molecular structure descriptors and investigated
activity, have values that are obtained in a consis-
tent manner. Until recently, these models have
used primarily empirically based descriptors.
However, experimental determination is time con-
suming and is a subject to experimental variation
and errors. A current trend in quantitative
structure–property/activity relationship (QSPR/
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QSAR) studies is the use of theoretical molecular
descriptors that can be calculated directly from
molecular structure. Using computational meth-
ods to derive them is faster and more convenient.
QSAR once quantified, can be used to estimate
the properties of other molecules even when their
structure is only sketchy.

Potts and Guy [7,8], proposed a two variable
QSAR models based on hydrophobicity, i.e. oc-
tanol/water partition coefficient (Koct) and
molecular size (molecular volume or molecular
mass) to predict the percutaneous flux of pharma-
cological and toxic compounds from their physio-
cochemical properties. The model that was
developed provided variable results for the com-
plete data set and had only limited statistical
accuracy, possibly because the analyzed data were
obtained from several different sources and were
associated with the risk of likely erroneous values
[9]. Later, the same authors developed more suc-
cessful model based on the effects of molecular
size and hydrogen bond activity [10]. Lien and
Gao [11] formulated a general mathematical
model, involving partition coefficient, molecular
mass and hydrogen bonding to correlate the
molecular structures and skin permeability of a
wide range of compounds through human skin.
Recently, Pugh et al. [12] have developed a model
for diffusion across human stratum corneum in
terms of molecular weight, H-bonding and elec-
tronic charge.

Chen et a. [13,14] studied the penetration of a
large number of heterogeneous compounds
through a polydimethylsiloxane (PDMS) mem-
brane. They derived different models for various
subclasses of the investigated data set, based on
measured solubility in isopropyl alcohol and the
calculated charges on particular atoms within the
molecule. Thus, these models require the experi-
mental measurements of solubility in isopropyl
alcohol, as there is no available method for its
calculations. Cronin et al. have developed a three
parameter QSPR model based on the number of
hydrogen bond acceptor and donor groups and
sixth-order path molecular connectivity, by use of
stepwise regression analysis for the prediction of
the maximum steady state flux through the
PDMS membrane (log J) [15].

The success of regression analysis in QSAR
depends upon an assumed linear relationship be-
tween the biological activity and one or more
descriptors. However, as the number of descrip-
tors increases, regression analysis becomes more
complex. One problem likely to occur in large
descriptor sets is repetition in information when
descriptors are correlated. Latent variable tech-
niques have become accepted methods of address-
ing this issue. These techniques include the use of
principal components in regression analysis and
the method of partial least squares [16]. A second
problem encountered in using regression analysis
is the a priori assumption of a model form (i.e.
quadratic, cubic, use of cross terms, etc.). Thus,
variable selection techniques such as stepwise for-
ward and stepwise backward multiple linear re-
gression analysis (MLR) [17] were introduced.
However, these approaches can capture only lin-
ear relationships between molecular characteris-
tics and predicted functional features. Over the
last few years the Artificial Neural Networks
(ANNs) modeling technique has attracted increas-
ing interest as a most promising method for clas-
sification and multivariate calibration problems
[18]. ANNs, in contrast to conventional methods,
are capable of recognizing highly nonlinear rela-
tionships; hence, they provide an interesting new
approach to QSAR and QSPR analysis [19–23].

A goal in this research was to develop a Genetic
Neural Network (GNN) model to predict the
penetration across PDMS membranes for differ-
ent compounds using only calculated molecular
descriptors. Genetic algorithm (GA) was used to
select a subset of the descriptors that best describe
the membrane penetration and Artificial Neural
Network (ANN) to correlate selected descriptors
steady state flux and develop a QSAR. The set of
256 compounds with experimentally derived maxi-
mum steady state flux values (J) through PDMS
membrane was taken from previous studies of
Chen and co-workers. They have determined
maximum steady state flux values (J) for selected
compounds by a constant accurate protocol under
identical laboratory conditions, thus fulfilling the
condition of successful QSAR modeling that
parameters have values, which are obtained in a
consistent manner.
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1.1. Artifical Neural Networks

An ANN is a biologically inspired computer
program designed to learn from data in a manner
emulating the learning pattern in the brain. Most
ANN systems are very complex high-dimensional
nonlinear information processing systems. ANNs
are composed of hundreds of single processing
elements (PE), artificial neurons. PEs are con-
nected with coefficients (weights), which consti-
tute the neural structure, and are organised in sets
of layers, the input layer, output layer, and hidden
layers between. Neural networks gather their
knowledge by detecting the patterns and relation-
ships in data and learn (or are trained) through
experience with appropriate learning exemplars,
not from programming. The input layer neurons
receive data from a data file. The output neurons
provide the ANN’s response to the input data.
Hidden neurons communicate only with other
neurons. They are part of the large internal pat-
tern that determines solutions to problems and
where the network learns interdependencies in the
model. Each hidden or output unit has a number
of incoming connections from units in the preced-
ing layer. The weighted sum of the inputs simu-
lates activation of the neuron. Thus, what is
learned in a hidden neuron is based on all the
inputs taken together. The activation signal is
passed through an activation function (also
known as a transfer function) to produce a single
output of the neuron. Transfer function for the
hidden units is needed to introduce nonlinearity
into the network.

The behavior of a neural network is determined
by the transfer functions of its neurons, by the
learning rule, and by the architecture itself We
have used a supervised network with a back-prop-
agation learning rule. In this type of model, infor-
mation from inputs (inputs=molecular
descriptors) is fed forward through the ANN to
optimize the connection weights among neurons.
The output of the neuron (molecular descriptors)
is related to the summed input by a sigmoid
shaped transfer function. During training, opti-
mization of the network weights is made by back-
propagation of error (e.g. difference between
predicted and measured drug flux), and the inter-

unit connections are changed until the error in
predictions is minimized across many data sets
and until the network reaches a specified level of
accuracy. These connection weights store the
knowledge necessary to solve specific problems.
Once the network is trained and tested it can be
given new input information (descriptors) to pre-
dict the output (maximum steady-state flux).

2. Experimental

2.1. Software

Neural Networks TM (StatSoft®) was used for
building the QSPR model and CAChe Project
leader Version 3.11 (Oxford Molecular Ltd.) was
used to calculate molecular descriptors from the
molecular structure.

2.2. Descriptor generation and analysis

A total of 42 calculated structure features in-
cluding constitutional, topological, chemical, geo-
metrical and quantum chemical descriptors were
calculated for each of the 254 compounds (Table
1). Once the molecular structures were encoded,

Table 1
Calculated structural descriptors

Molecular descriptorClass

Functional group counts (amine,Constitutional
descriptors aldehyde, amide, carbonyl, carboxylate,

cyano, ether, hydroxyl, methyl,
methylene, nitro, nitroso, sulfide,
sulfone, sulfoxide and thio)
Kier and Hall connectivity indicesTopological

descriptors (�0–�2) and valence connectivity indices
(�0V–�V), topological shape indices
(�0–2)

Chemical Molar refractivity, molecular volume,
descriptors log P, molecular mass, density

Geometrical Solvent accessible surface, ring count,
descriptors ring size

Dipole moment, HOMO and LUMOQuantum
energies, dielectric energy, steric energy,chemical

descriptors heat of formation, total energy,
minimum energy, electron affinity
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Table 2
The influence of different topology on the ANNs performancea

ANNSb 42/7/2/1 42/7/5/1 30/7/8/1 24/10/8 16/9/1 13/8/1/ 12/5/1 11/4/1 8/3/1

0.0000 0.0001 0.0005 0.001 0.0015 0.002 0.0025 0.0040UP 0.0000
0.38 0.48 0.44 0.500.31 0.44RMStr 0.36 0.46 0.57
0.67 0.72 0.72 0.66RMStest 0.580.71 0.59 0.75 0.77
0.74 0.87 0.90 0.530.73 0.52RMSvai 0.60 0.66 0.66
1.78 2.07 2.05 1.69 1.55 1.55 1.87 2.00� 1.76

a n, number ofinputs; UP, unit penalty factor.
b Number of inputs — hidden neurons — outputs.

the next step in QSAR model development was to
select relevant molecular descriptors that best en-
coded membrane penetration. Using a GA for
selection and following a unit penalty factor of
0.000–0.004 the number of inputs was reduced
from 42 to 12. Input selection has reduced the size
and complexity of the network and focused the
training on the most important data. This also
reduced the training time and improved the net-
work performance.

2.3. Optimal network architecture

A standard feed-forward network, with back-
propagation rule and multilayer perception
(MLP) model architecture [24] with maximum
two hidden layers was chosen. Although it is
possible to approximate any function with just
one layer of hidden units, a huge number of
hidden units may be required. An additional
layer, which drastically reduces the number of
hidden units and, consequently, the number of
required weights was used to avoid this problem.

The set of 254 structurally different compounds
and their experimentally derived values of a maxi-
mum steady state flux across a PDMS membrane
(log J) used in this study was collected from the
literature [14,15]. An initial neural network con-
sisting of 42 inputs (calculated molecular descrip-
tors), two hidden layers and one output neuron
(log J) was used. The number of inputs and
hidden neurons was optimized. (Table 2). A set of
200 compounds was selected for training and
testing the ANN and 54 compounds were used as
an external prediction set. Before each training
run, both weights and biases were initialized with

random values and 200 compounds in the work-
ing data set were split randomly into: the training
set containing 160 data sets and testing set con-
taining 40 data sets and the results of the five runs
were averaged. During training, the performance
of the ANN was evaluated with testing data. The
training set was used to train the network and the
testing set was used to determine the level of
generalization produced by the training set and to
monitor over-training the network, each with cor-
responding rooted mean squared (RMS) error.
For an unbiased estimate of the generalization
error, the ANN was presented with a validation
data set that was not used at all during the
training process. Thus, the validity of the QSAR
model was evaluated with the validation data set,
by predicting membrane penetration for com-
pounds that have not been studied during model
development.

2.4. Neural network analysis

The two forms of network analysis are model
testing and sensitivity analysis. Both methods
were performed concurrently with the training of
the network. The testing and training set RMS
errors were used to determine overall quality of a
particular subset of descriptors (Table 2). Train-
ing was stopped, at each run, once the error
performance of the network began to deteriorate,
based on the training and testing set errors, when
the training RMS error fails to improve over a
given number of epochs and the testing RMS
error starts to increase.

The second form of network analysis computes
sensitivities of the network’s outputs with respect
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to each of its inputs. ANNs compute the output
as a sum of nonlinear transformations of linear
combinations of the inputs. Sensitivity reports
show the sensitivity of the output variables, as a
percentage, to the changes in the input variables.
If the direction of the change in the output vari-
able is always the same as the change in investi-
gated descriptor, then the average sensitivity is
positive. The set of percentages reveals the effect
that a change in a particular input has on output.

3. Results and discussion

A first step in this study was to calculate a
multitude of structural descriptors as mathemati-
cal representations of chemical structure. To de-
scribe physico-chemical structure, descriptors are
utilized that account for three aspects of the com-
pounds, namely the hydrophobic, electronic and
steric effects of the compound. Hydrophobicity is
often related to the ability of a compound to
partition through a membrane. Steric effects re-
late to the ability to pass through a membrane or
to bind to a receptor site. Electronic effects may
relate to reactivity or metabolism. Connectivity
and topological descriptors were calculated di-
rectly from the two-dimensional connection table
representation of the structure, employing meth-
ods drawn from mathematical graph theory. Geo-
metric descriptors were calculated from
three-dimensional molecular models. Electronic
descriptors were derived from empirical or molec-
ular orbital calculations. One of the difficulties
with the large number of descriptors is deciding
which ones will provide the best regressions, con-
sidering both goodness of fit and the chemical
meaning of the regression. Following a unit
penalty factor of 0.00, 0.0001, 0.0005, 0.001,
0.0015, 0.002, 0.0025 and 0.004, the number of
inputs was reduced from 42 to 30, 24, 16, 13, 12,
11, and finally to 8 inputs respectively, and the
two hidden layer were replaced with one hidden
layer (Table 2).

The best nonlinear GNN model for the estima-
tion of log J values for a data set of 254 drugs
was chosen by comparing the prediction obtained
from several high scoring models. The model has

12 selected inputs with sensitivity greater that 1%
and unit penalty factor greater than 0.0025 (Table
3). The QSPR that was developed indicates that
inter-molecular interactions (dipole interaction,
electron affinity), hydrogen bonding capacity of
drugs (presence of amino and hydroxyl group),
molecular shape and size (topological shape in-
dices, molecular connectivity indices, ring count)
are important for drug penetration through mem-
branes. Furthermore, conformational stability (to-
tal energy, dielectric energy, LUMO) is also found
to be an important parameter for membrane pen-
etration. As expected, poor correlation was ob-
tained with solvent-accessible surface areas [25].
However, calculated log P values, which is impor-
tant in controlling the absorption, distribution,
metabolism, elimination of drugs, failed to predict
membrane penetration. This could be attributed
to the incapacity of most lipophilicity parameters
to account for intramolecular interactions, such as
intramolecular hydrogen bonding.

Size, shape and symmetry of molecules play a
key role in all processes where they interact and
associate. The quantification of molecular shape
and symmetry helps in understanding how the
three-dimensional properties and bulk hindrance
influence the interaction between molecules. Over
the last 10 years, a variety of topological shape
indices and molecular connectivity indices as the-
oretical descriptors, have emerged as alternative
descriptors in quantitative structure–activity stud-
ies for characterization of molecular [26,27]. To-

Table 3
Sensitivity analysis of membrane permeability (log J)

Descriptor Sensitivity

0.445Dielectric energy
−0.180–OH
−0.091Ring count

LUMO 0.051
–NH2 −0.049
EL. affinity 0.041
MW −0.034
Total energy −0.027
Dipole 0.012

−0.008�1

�1 −0.019
−0.014�2
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pological shape indices and molecular connectiv-
ity indices are quantitative descriptors of molecu-
lar shape and molecular similarity [28]. The
advantage of such descriptors is that they can be
calculated for any chemical structure, real or hy-
pothetical. The ANN model that was developed
included topological shape descriptor of the first
order (�1) and connectivity indices of the first and
second order (�1 and �2) for effective quantifica-
tion of molecular shape and bulk properties.

Topological shape indices [29] are the basis of a
method of molecular structure quantification in
which attributes of molecular shape and size are
encoded into three indices (� values 1–3), proper-
ties. Topological indices are suitable for describ-
ing similarity or dissimilarity of molecules. If two
compounds have close values for a number of
indices, they can be regarded as being similar.
Topological shape indices or numerical graph in-
variants are derived from different classes of
weighted graphs, representing various levels of
chemical structural information. They are numeri-
cal quantifiers of molecular topology and encode
information regarding the size, shape, branching
pattern, cyclicity, and symmetry of molecular
graphs. � values are derived from counts of one-
bond, two-bond and three-bond fragments, each
count being made relative to fragment counts in
reference structures, which possess a maximum
and minimum value for that number of atoms.
The first order shape index, �1, encodes molecular
cycles, �2 encodes linearity and �3 encodes
branching. The model shows that increase in �1

decreased membrane penetration due to increase
in molecular size and lipid solubility.

The molecular connectivity indices, � values,
describe the extent of skeletal branching. Connec-
tivity indices are descriptor of molecular struc-
ture, a descriptor of size and shape based on a
count of groupings of skeletal atoms, weighted by
the degree of skeletal branching. Each carbon
atom in a molecule skeleton is assigned a number
according to its number of neighboring carbons.
The molecular skeleton is then fragmented into all
of its two carbon atom bonds. The sum of these
values over the structure forms the � index.
Molecules could be further dissected into two
bond fragments, three bond fragments and so on.

Molecular structure is quantified so that weighted
counts of substructure fragments are incorporated
into numerical indices and an index is derived
from a consideration of pairs of atoms forming
bonds. �0, zero order (atomic) connectivity in-
dices, provides information about the number of
atoms in a molecule. Molecular connectivity index
of the first order, �l, encodes single bond proper-
ties. It is a weighted count of bonds, related to the
types and position of branching in the molecule.
�2 (path) is derived from fragments of two-bond
lengths. It also provides information about types
and position of branching and may be indicative
of the amount of structural flexibility. An increase
in branching increases surface area and molecular
volume [30] and results in an increased solubility
and lowered partition coefficient. QSAR suggest
that the increase in �1 and �2 decrease membrane
penetration. Statistical analysis has shown that �1

and �2 are covariant to an extent. However, there
is enough difference between the information in �1

and �2 to reflect structural features contributing in
a different way from the numerical value. �2 can
differentiate between structural isomers, while �1

values are identical. Low values of �1 and �2 are
found for more elongated molecules or those with
only one branching atom. An increase in the
length of the carbon chain, the nonpolar portion
of the molecule, results in an increase in lipid-sol-
ubility (log P) and molecular size. The partition
coefficient correlates with numerous parameters
that represent bulk properties, such as molecular
mass, volume and surface area. Molecular size is
limiting the absorption through membranes in
general. Molecular mass is often used as molecu-
lar size descriptor. Medications with a low molec-
ular mass that are unionized and liphophilic have
higher flux value simply because diffusion is much
easier. It is clear, from input sensitivity analysis,
that an increase in molecular topology (�1, �1, �2)
and an increase in ring count and molecular mass
results in a flux decrease. Mechanistically, a more
bulky molecule is less likely to pass through the
membrane.

Functional groups exhibit a characteristic reac-
tivity and characteristic chemical behavior when
present in a compound. Particular functional
groups are the most important in the specific
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interaction between a drug and a transporter re-
ceptor. Undoubtedly, the functional group ac-
counts for many of the dipole–dipole,
dipole-induced dipole and hydrogen bond interac-
tions. For each molecule, the orientation of the
functional groups influences the dipole (electro-
static) moment value, and this descriptor can be
used as a selector of active conformations. The
QSAR models obtained have a large dependence
on a number of hydroxyl and amino groups,
substituents with polar bonds that are capable of
hydrogen bonding. It is shown that properties
associated with hydrogen bonding should be kept
to a minimum to promote high membrane pene-
tration. Since the presence of hydroxyl and amino
groups in the molecule facilitates hydrogen bond-
ing, an increase in the number of hydroxyl and
amino groups decreases membrane penetration.

Dipole moment is also a measure of the polar-
ity of a molecule. Electronic effects may relate to
molecular reactivity or metabolism [31]. The
greater the dipole moment, the greater the activ-
ity. Drugs with higher dipole moments have
higher maximum steady-state flux through
membranes.

Although solubility parameters, topological
shape and connectivity indices are often successful
in rationalizing solubilities and partition coeffi-
cients, they cannot account for conformational
changes and they do not provide information
about electronic influences through bonds or
across space. These electronic influences may play
a role in the magnitude of a biological activity,
along with structural features encoded in indexes.
Therefore, electronic effects are quantified explic-
itly by the use of molecular orbital calculations to
estimate dielectric energy, Lowest Unoccupied
Molecular Orbital (LUMO) energy, Highest Oc-
cupied Molecular Orbital (HOMO) energy and
electron affinity.

The most important molecular descriptor in
QSAR was found to be dielectric energy. Dielec-
tric setting, i.e. the change in charge rearrange-
ment of molecules, accompanies the change in
hydrogen bond strength [32]. The QSPR model
shows that the increase in dielectric energy pro-
motes membrane penetration.

The LUMO energy is often used as a measure
for electron affinity of a molecule or its reactivity
as an electrophyle. Good electrophyles are those
in which the electrons reside in low-lying orbitals.
Electrophyles are often reducing agents. High val-
ues of LUMO indicate loosely bound electrons,
which are reactive to nucleophilic attack. The
energy difference between the HOMO and the
LUMO energies is related to the minimum energy
needed to excite an electron in the molecule and
was used as an index of kinetic stability for a
variety of polycyclic aromatic hydrocarbons [33].
An increase in electron acceptor properties in-
creases binding affinity.

Electron affinity [34] also incorporates electron
correlation and relaxation, whereas LUMO does
not, and is also a measure of reduction capacity.
Since living organisms function at an optimum
redox potential range, it is assumed that redox
potential of compounds of a certain type correlate
with biological effect. An increase in molecular
reactivity also increases metabolic processes. The
access of a drug to the sites of oxidation–reduc-
tion reactions is hindered by the complex compet-
ing events during absorption. Therefore,
correlation between redox potential and biological
activity is important for compounds with similar
structural and physical properties. As expected,
compounds with lower total energies, higher
LUMO energy and higher electron affinity have
higher rates of membrane penetration.

Molecular interactions are determined funda-
mentally by molecular size, shape and charge
distribution. If a molecule has a form similar to a
geometrically defined solid, then a qualitative or
semi-quantitative description is easily performed,
assuming that the dimensions and other geometri-
cal parameters of that solid represent the molecu-
lar shape. However, molecules rarely have a
unique description and there may be several dif-
ferent forms in equilibrium. Thus, their dynamic
structure should be recognized. Molecular model-
ing software separates the graphics and the simu-
lation. The graphics are used for constructing
molecules, editing topology, and visualizing prop-
erties, while the simulation carries out energy
minimization or dynamics. These quantum chemi-
cal descriptors can give great insight into structure
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Fig. 1. Functional dependence surfaces for descriptors from the final model. The descriptors are (a) dipole and molecular mass; (b)
electron affinity and -NH2 group count; (c) dielectric energy and -OH group count; (d) �1 and �2; (e) ring count and �1; (f) total
energy and LUMO.

and reactivity and can be used to establish and
compare conformational stability, chemical reac-
tivity and inter-molecular interactions. Energies
were calculated for an optimized conformation
with the most stable geometry, or minimum en-
ergy structure. Optimization was conducted to
find a low energy structure for the steric energy,
heat of formation and for total energy. Depend-
ing on the procedure used, the calculated energy
was steric energy (from mechanics), heat of for-
mation from Molecular Orbital Package (MO-
PAC) [35,36] and total energy from Zerner’s
Intermediate Neglect of Differential Overlap
program (ZINDO) [37]. The total energy of a
system was approximated by summing a series

of empirically derived equations, which describe
bond stretching, angle bending, torsional, and
nonbonded (van der Waals and hydrogen bond)
interactions. It was found that compounds with
lower total energies had higher membrane pene-
tration steady-state flux.

The interpretation of effects of individual de-
scriptors is difficult as the model is multivariate
and nonlinear. However, some insight into the
degree of nonlinear behavior of descriptors was
assessed with a functional dependence plot. The
value of input variables was varied through its
range, while all other inputs were held constant.
The network output was plotted against two in-
put descriptors to generate a functional depen-
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Table 4
Performance of the ANN model (12-5-1) in the prediction of
log J values

PredictedExperimentalSystematic name
log J 12-5-1

−2.013−2.523-Nitrobenzaldehyde
−5.2052,5-Pyridinedicarboxylic −4.896

acid
1-Fluoro-4-nitrobenzene −1.6 −2.069

−3.828−3.4814-Aminoquinoline
−2.9752-Ethylimidazole −2.376

−0.61932-Thiophenmethanol −2.179
−2.7013-Hydroxypyrimidine −2.685

−4.6726-Quinolinecarboxylic −4.097
acid

−4.551−5.145Terephthalic acid
−1.7913,5-Dimethylpyrazole −1.756

−0.72261,2,5-Trimethylpyrrole 0.918
−4.024 −3.3172-Methyl-5-nitroimid-

azole
Pyrrole −0.891 −0.9402

−3.3584-Nitrobezoic acid −3.478
−1.902−1.81Diphenyl ether
−1.656Quinoline −1.4

−3.5522-Quinolinecarboxylic −3.551
acid

−3.089−2.6597-Nitroindole
−2.7632-Methylimidazole −2.797

−5.1 −4.0816-Hydroxynicotinic
acid

1-Naphthoic acid −2.985 −3.335
−3.444-Carboxybenzaldehyde −3.115

1-Methylpyrrole −0.6429−0.657
2-Methyl-1-phenyl-2-pro −1.82 −1.754

panol
−5.4892,4-Quinolinediol −4.397

−1.697−1.532-Furaldehyde
−1.865Pyridazine −1.81

−1.148(2-Chloroethyl)benzene −1.292
−1.314−1.719Butyrophenone

−2.2788-Aminoquinoline −2.408
−0.282,5-Dimethylfuran −0.5196

−2.155−1.8131-Methylimidazole
−0.948Benzofuran −1.272

−0.7433Pyridine −0.695
−3.124−3.0986-Chloronicotinic acid

−1.75Aniline −1.161
Pyrazole −1.782−1.597

−2.304−2.0976-Methoxyquinoline
−2.05Biphenyl −1.653

2-Thiophenacetic acid −2.757−2.475
−1.400 −0.91292-Thiophenmethylamine

Table 4 (Continued)

Experimental PredictedSystematic name
log J 12-5-1

Phenol −1.570 −1.708
−1.8423,5-Dichloropyridine −1.209

2-Furoic acid −2.476 −2.993
−1.338−1.250Butyl phenyl ether

−0.388 −0.4872Toluene
−2.504 −1.8784-Chlorobenzylalcohol

2,5-Dimethylpyrrole −1.400 −0.8757
4-Aminophenol −3.910 −3.307

−0.468 −0.73622,5-Dimethylthiopheme
2-Aminobenzylalcohol −2.630 −3.111

−4.220 −4.1975-Nitro-8-hydroxyquin-
oline

2-Hydroxyquinoline −3.813 −3.581
−4.539−3.6637-Amino-2,4-dimethyl-

1,8-naphridine
−0.540 −0.6351Chlorobenzene

Furfuryl alcohol −1.860 −2.205
−3.698 −3.7042-Methyl-5-nitrobenzi-

midazole
4,7-Dichloroquinoline −2.590 −2.449

−3.019 −2.921Imidazole
5-Chloro-8-hydroxyqui-no −3.078−3.166

line
−2.3696-Methoxyquinaldine −2.247

−0.256 −0.5152Benzene
−1.685 −1.6842-Thiophencarbox-

aldehyde
−0.7275−1.030Anisole

Aminopyrazine −2.587 −2.758
−3.282 −3.396Picolinic acid

−3.024−3.0616-Aminoquinoline
2-Naphthol −2.477 −2.205

−0.426 −0.61932-Methyltiophen
Ethyl-2-methylbenzoat −1.480 −1.429

−3.987 −4.228Isophthalic acid
Methyl benzoate −1.460 −1.312
1-Buthylbenzene −0.753 −0.8914

−2.669−2.740Methyl paraben
−3.379−3.3093-Hydroxybenzoic acid

−1.397 −1.363Phenylbutylamine
−1.180 −0.9269Methylbenzylamine

2-Chlorolepidine −2.300 −2.046
−1.566Indole −1.846

−3.395 −2.8558-Nitroquinoline
3-Quinolinecarboxylic −3.997−4.41

acid
−1.6343-Chloroaniline −2.015
−3.288−2.944Benzimidazole

−3.615 −3.0636-Nitroquinoline
−3.599−3.8762-Hydroxy-4-methylqui-n

oline
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Table 4 (Continued)

Systematic name Experimental Predicted
12-5-1log J

Benzoic acid −2.349−2.316
−1.7911,5-Dimethyl-2-pyrrole −1.970

carbonitrile
−1.392Furfuril amine −1.116
−3.2335-Nitroquinoline −2.862

4-t-Butyl toluene −1.108−0.915
−1.631-Methyl-2-phenoxyethyla −1.814

mine
Phenethylamine −1.453−1.257

−3.772-Amino-5-nitropy- −3.851
ridine

−4.3644-Metoxy-2-quinolinic −4.617
acid

1,3-Diethylbenzene −0.774 −0.643
−4.4912,4-Dihydroxypyridine −4.289

−2.447 −2.8181-Nitronaphtelene
8-Hydroxyquinaldine −2.794−2.375
4-Aminoacetophenone −3.040 −2.795
Nitrobenzene −2.333−1.556

−1.294Benzaldehyde −1.480
Acetophenone −1.284−1.640
Ethylbenzene −0.5396−0.555
Fluorobenzene −0.5679−0.256

−0.80313-Chlorotoluene −0.837
3-Xylene −0.58 −0.5381
3-t-Butylphenol −1.900 −1.767

−3.448−3.5304-Hydroxybenzoic acid
4-Chlorotoluene −0.694 −0.8136
Butylbenzene −0.895 −0.9544
Phenetole −0.9755−1.11

−1.7163-Anisaldehyde −2.09
−1.354Methyl-3-methyl- −1.43

benzoate
4-t-Butylbenzoic acid −2.759 −2.776

−2.857Ethyl paraben −2.69
−1.823 −2.023-Pyridinecarbox-

aldehyde
3,5-Lutidine −0.9063−0.948

−2.3775-Chloro-3-pyridinol −2.621
−1.225−1.2274-t-Butylpyridine

Nicotinic acid −3.258−3.76
−0.8204-Picoline −0.845

−1.992 −1.7923-Acetylpyridine
2-Aminopyridine −2.053−2.682
3-Aminopyridine −1.895 −2.149

−1.188−1.2112-Chloro-6-methoxy-
pyridine

−0.87582-Ethylpyridine −0.718
−1.0602-Chloropyridine −1.081

2-Butoxypyridine −1.155 −1.618
2-Fluoropyridine −0.878 −0.9825

−1.1823-Methoxypyridine −0.809
−2.653 −1.9852-Methoxy-5-nitro-

pyridine

Table 4 (Continued)

Systematic name Experimental Predicted
log J 12-5-1

−2.232-Methoxy-5-amino- −1.95
pyridine

−3.5382-Hydroxy-5-nitro- −3.747
pyridine

−2.262−2.4992-Hydroxypyridine
2-Amino-4-methyl- −2.228 −2.083

pyridine
2-Amino-S-chloro- −2.162−2.625

pyridine
−1.82Ethyl nicotinate −1.53
−1.834Lepidine −1.853

−1.7476-Methylquinoline −1.813
8-Hydroxyquinoline −2.358 −2.519

−3.9232-Methyl-8-nitro- −3.827
quinoline

−1.748Quinaldine −1.622
6-Isopropylquinoline −2.257−1.897
5-Aminoquinoline −3.113 −3.152
3-Aminoquinoline −2.949−2.934

−2.9044-Hydroxyquinoline −3.688
−3.1358-Quinoline carboxylic −4.213

acid
4-Quinoline carboxylic −4.518 −4.270

acid
−4.132 −4.2491-Isoquinoline

carboxylic acid
−1.3112-Methyl-5-butyl- −1.113

pyridine
−1.129 −1.0452.6-Dimetoxypyridine

6-Methoxy-8-nitro- −4.249−4.332
quinoline

−2.253 −2.3842-Amino-4,6-dimethyl-
pyridine

2-Methylindole −1.983 −1.686
Naphthalene −1.746 −1.360
1-Bromonaphthalene −1.761−1.726

−1.4831-Methylnaphthalene −1.592
−1.7342-Methoxynaphthalene −1.918

1,6-Dixydroxy- −1.883 −2.320
naphthalene

−3.570 −4.1632-Naphtalenacetic acid
1-Etoxynaphthalene −2.790 −1.84
2-Methylbenzimidazole −2.979 −3.246
2-Hydroxybenzimidazol −3.283−3.922

−1.5813-Phenyl-1-propylamine −1.457
1-Phenyl-2-propanol −1.811−2.015

−1.8253-Phenyl-1-propanol −2.324
−0.62433-Methyltiophene −0.407

−2.411 −2.5463-Thiopheneacetic acid
3-Thiophenecarbox- −1.473−1.612

aldehyde
3-Aminobenzoic acid −3.727 −3.683
3-Toluic acid −2.309 −2.273

−3.2583-Anisic acid −2.579
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Table 4 (Continued)

Systematic name PredictedExperimental
12-5-1log J

−3.226 −3.0024-Anisic acid
−2.367−2.3713-Chlorobenzoic acid

−2.753 −3.2953-Nitrobenzoic acid
4-Aminobenzoic acid −3.488 −3.821
4-Chlorobenzoic acid −3.088 −2.388
4-Acetoxybenzoic acid −3.107 −3.653

−1.213−1.387Benzylamine
Benzyl alcohol −2.222 −1.852
4-Xylene −0.457 −0.5351

−0.9969−1.0601,3-Diisopropylbenzene
−0.6647−0.701Mesitylene
−1.002−1.0831,3,5-Triethylbenzene

−1.620 −1.9513-Fluoronitrobenzene
−1.586−1.9903-Methoxyaceto-

phenone
4-Anisaldehyde −2.070 −1.737

−1.4974-Isopropylbanzalde- −1.640
hyde

−1.86−1.710Methyl-4-t-butylbenz-
oate

−1.918−1.980Dibenzyl
3-Phenoxytoluene −2.010 −2.056
2-Aminoacetophenone −2.171−2.160

−2.030 −1.5292-Anisaldehyde
2-Chloroacetophenone −1.830 −1.316

−1.580 −1.242-Chlorobenzaldehyde
2-Chloronitrobenzene −1.540 −2.117

−0.771 −0.78552-Chlorotoluene
Ethyl salicylate −1.610 −2.281
2-Fluoroaniline −1.310 −1.437

−1.300 −1.5262-Fluorobenzaldehyde
−1.837−1.842-Fluoronitrobenzene

−1.44 −1.5462-Fluoropropiophenone
−0.349 −0.68742-Fluorotoluene

2-Hydroxyacetophenone −1.78 −1.983
−1.5162-Isopropylaniline −1.69

2-Metoxyacetophenone −2.02 −1.786
−2.56−2.68Methyl 2-nitrobenzoate

−2.19 −1.709Methyl
2-metoxybenzoate

−1.67 −2.133Methyl salicylate
−1.72 −2.0382-Nitrotoluene

2-Xylene −0.644 −0.5438
2-Nitrobenzoic acid −2.86 −3.08

−2.57 −3.06Salicylic acid
−4.228−3.834-Hydroxybenzamide

3-Hydroxy-4-metoxy- −4.042−4.37
benzoic acid

−3.334-Chloro-3-nitroaceto- −3.047
phenone

Table 4 (Continued)

ExperimentalSystematic name Predicted
12-5-1log J

1,2,4-Trimethylbenzene −0.74 −0.5734
−3.31 −3.061Phenylurea

Benzohydroxamic acid −3.27 −3.445
Benzamide −3.07 −3.412

−1.905−1.95Ethyl cinnamate
−1.647−1.65Phenyl acetate

Benzonitrile −1.550 −1.252
Thioanisole −1.390 −1.142

−1.548−1.300Iodobenzene
−0.711 −0.5906Styrene

−3.209−2.9302-Chlorophenoxyacetic
acid

−3.540 −5.1532-(3-Hydroxyp
henyloxy) ethanol

−2.1303-Methoxybenzyl acetate −2.787
Phenoxyacetic acid −2.458 −3.135
3-Phenylbutyraldehyde −1.959 −1.673

−1.686 −1.4682-Phenylpropion-
aldehyde

Propyl paraben −2.720 −3.01
−1.667−1.9603-Chloro-4-methylan-

iline
3-Amino-1,2,4-triazole −3.270 −4.158

−4.067 −4.172-Pyrazine carboxylic
acid

−3.865 −4.6973-Amino-5,6-dimethyl-
1,2,4-triazine

Anthracene −3.578−3.839
−2.683 −3.696Acridine

2-Quinoxalinol −4.164 −3.69
−3.399−3.32,4-Dimethyl-6-hydrox-yp

yrimidine
4-Methylpyrimidine −1.278−1.022
Isoquinoline −1.677 −1.69
Methoxymethylphenyl −1.646−1.684

sulphide
−1.805 −1.3193-Iodoanisole
−1.761 −1.1612-Chloroanisole

4-Bromoveratrole −2.34 −1.372
−1.328−1.4214-Bromotoluene

−2.023 −1.5582-Anisidine
3-Fluorobenzyl chloride −1.12 −1.071

−1.937 −2.1412-Chloro-4-fluoroaceto-ph
enone

4-Chloro-4-fluorobutir- −2.845−2.21
ophenone

−2.29 −2.6562-Fluorobenzoic acid
5-Methylbenzimidazole −3.076 −3.579
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dence surface. This gives an indication of how the
network output alters in response to the two
selected input variables. Fig. 1 displays functional
dependence surfaces of the six most important
descriptors. Nonlinearity of inputs is clearly evi-
dent suggesting the complex relationship between
the input descriptors and flux value.

As expected, the model shows a strong correla-
tion (up to R2=0.919) between predicted and
experimentally measured flux values (Table 4).
Since the slope (b=1.03, tb=1.64) was not sig-
nificantly different from unity, the method did not
show proportional error. In other words, the sen-
sitivity was the same for measured and predicted
values. A proportional error leads to a change in
b so that the difference between b and unity gives
an estimate of the proportional error. However,
the intercept was significantly different from zero
at the 0.05 significance level (a=0.13, ta=2.8)
indicating that there is a constant systematic error
that leads to the method bias. Indeed, the pre-
dicted values are slightly lower that the experi-
mentally measured flux values.

4. Conclusion

A 12-descriptor nonlinear computational neural
network model has been developed for the estima-
tion of log J values for a data set of 254 drugs.
The training set RMS error was 0.36 and the
testing set RMS error was 0.59. Based on the
RMS errors of the training and testing sets and
high correlation of predicted vs. experimentally
derived M/P values (R2 greater than 0.91, it is
clear that a link exists between structure and
membrane penetration. The strength of the link
was measured by the quality of the external pre-
diction set. With an RMS error of 0.60 and a
good visual plot, the external prediction set en-
sures the quality of the model. Unlike previously
reported models, the QSPR model described here
does not require experimental parameters and
could potentially provide useful prediction of
membrane penetration of new drugs and reduce
the need for actual compound synthesis and flux
measurements.
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